317 research outputs found

    The Complexity of Repairing, Adjusting, and Aggregating of Extensions in Abstract Argumentation

    Full text link
    We study the computational complexity of problems that arise in abstract argumentation in the context of dynamic argumentation, minimal change, and aggregation. In particular, we consider the following problems where always an argumentation framework F and a small positive integer k are given. - The Repair problem asks whether a given set of arguments can be modified into an extension by at most k elementary changes (i.e., the extension is of distance k from the given set). - The Adjust problem asks whether a given extension can be modified by at most k elementary changes into an extension that contains a specified argument. - The Center problem asks whether, given two extensions of distance k, whether there is a "center" extension that is a distance at most (k-1) from both given extensions. We study these problems in the framework of parameterized complexity, and take the distance k as the parameter. Our results covers several different semantics, including admissible, complete, preferred, semi-stable and stable semantics

    On the formation of adiabatic shear bands in textured HCP polycrystals

    Get PDF
    AbstractAdiabatic shear band (ASB) formation in textured HCP polycrystals has been investigated under regimes of high rate compression and shear loading using dynamic thermo-mechanically coupled, dislocation-based crystal plasticity modelling. The balance between rate of plastic dissipation leading to internal heat generation versus rate of thermal diffusion at a crystallographic length scale has been shown to be pivotal for the formation or otherwise of ASBs. Micro-texture has been found to have a key role in both advancing and inhibiting shear band growth, and its control offers the possibility of new alloys with higher impact strength over strain rate range1 × 10−2 to 1 × 105 s−1. Texture has been found to lead to wide variations in applied macroscopic strain at which ASB formation occurs, such that strain level in isolation is inappropriate as a universal indicator of ASB onset.High-rate shear loading is found to lead to lower onset strains for ASBs compared to high rate compression, but the dependence of both on texture leads to considerable variation in strain level for ASB formation. A preliminary map demarcating ASB onset has been established over regimes of applied strain and texture for dynamic shear and compression

    The effect of the beta phase on the micromechanical response of dual-phase titanium alloys

    Get PDF
    This paper investigates the role of beta phase on the micro-mechanical behaviour of dual-phase titanium alloys, with particular emphasis on the phenomenon of cold dwell fatigue, which occurs in such alloys under room temperature conditions. A strain gradient crystal plasticity model is developed and calibrated against micro-pillar compression test data for a dual-phase alpha-beta specimen. The effects of key microstructural variables, such as relative beta lath orientation, on the micromechanical response of idealised alpha-beta colony microstructures are shown to be consistent with previously-published test data. A polycrystal study on the effects of the calibrated alpha-beta crystal plasticity model on the local micromechanical variables controlling cold dwell fatigue is presented. The presence of the alpha-beta phase is predicted to increase dwell fatigue resistance compared to a pure alpha phase microstructure

    On the equivalence between Implicit Regularization and Constrained Differential Renormalization

    Full text link
    Constrained Differential Renormalization (CDR) and the constrained version of Implicit Regularization (IR) are two regularization independent techniques that do not rely on dimensional continuation of the space-time. These two methods which have rather distinct basis have been successfully applied to several calculations which show that they can be trusted as practical, symmetry invariant frameworks (gauge and supersymmetry included) in perturbative computations even beyond one-loop order. In this paper, we show the equivalence between these two methods at one-loop order. We show that the configuration space rules of CDR can be mapped into the momentum space procedures of Implicit Regularization, the major principle behind this equivalence being the extension of the properties of regular distributions to the regularized ones.Comment: 16 page

    A formal concept view of argumentation

    Get PDF
    International audienceThe paper presents a parallel between two important theories for the treatment of information which address questions that are apparently unrelated and that are studied by different research communities: an enriched view of formal concept analysis and abstract argumentation. Both theories exploit a binary relation (expressing object-property links, attacks between arguments). We show that when an argumentation framework rather considers the complementary relation does not attack, then its stable extensions can be seen as the exact counterparts of formal concepts. This leads to a cube of oppositions, a generalization of the well-known square of oppositions, between eight remarkable sets of arguments. This provides a richer view for argumentation in cases of bi-valued attack relations and fuzzy ones

    Comparing Implicit, Differential, Dimensional and BPHZ Renormalisation

    Get PDF
    We compare a momentum space implicit regularisation (IR) framework with other renormalisation methods which may be applied to dimension specific theories, namely Differential Renormalisation (DfR) and the BPHZ formalism. In particular, we define what is meant by minimal subtraction in IR in connection with DfR and dimensional renormalisation (DR) .We illustrate with the calculation of the gluon self energy a procedure by which a constrained version of IR automatically ensures gauge invariance at one loop level and handles infrared divergences in a straightforward fashion. Moreover, using the ϕ44\phi^4_4 theory setting sun diagram as an example and comparing explicitly with the BPHZ framework, we show that IR directly displays the finite part of the amplitudes. We then construct a parametrization for the ambiguity in separating the infinite and finite parts whose parameter serves as renormalisation group scale for the Callan-Symanzik equation. Finally we argue that constrained IR, constrained DfR and dimensional reduction are equivalent within one loop order.Comment: 21 pages, 2 figures, late

    Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor

    Get PDF
    The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.Comment: 18 pages, 11 figure
    • 

    corecore